Rational Points on Certain Del Pezzo Surfaces of Degree One
نویسنده
چکیده
Let f(z) = z +az + bz + cz+ d ∈ Z[z] and let us consider a del Pezzo surface of degree one given by the equation Ef : x 2 − y − f(z) = 0. In this note we prove that if the set of rational points on the curve Ea, b : Y 2 = X + 135(2a − 15)X − 1350(5a + 2b − 26) is infinite, then the set of rational points on the surface Ef is dense in the Zariski topology.
منابع مشابه
Weak Approximation for General Degree Two Del Pezzo Surfaces
We address weak approximation for certain del Pezzo surfaces defined over the function field of a curve. We study the rational connectivity of the smooth locus of degree two del Pezzo surfaces with two A1 singularities in order to prove weak approximation for degree two del Pezzo surfaces with square-free discriminant.
متن کاملRecent Progress on the Quantitative Arithmetic of Del Pezzo Surfaces
— We survey the state of affairs for the distribution of Q-rational points on non-singular del Pezzo surfaces of low degree, highlighting the recent resolution of Manin’s conjecture for a non-singular del Pezzo surface of degree 4 by la Bretèche and Browning [3].
متن کاملResent Progress on the Quantitative Arithmetic of Del Pezzo Surfaces
We survey the state of affairs for the distribution of Q-rational points on non-singular del Pezzo surfaces of low degree, highlighting the recent resolution of Manin's conjecture for a non-singular del Pezzo surface of degree 4 by la Bretèche and Browning [3].
متن کامل1 3 Fe b 20 09 COUNTING INTEGRAL POINTS ON UNIVERSAL TORSORS
— Manin’s conjecture for the asymptotic behavior of the number of rational points of bounded height on del Pezzo surfaces can be approached through universal torsors. We prove several auxiliary results for the estimation of the number of integral points in certain regions on universal torsors. As an application, we prove Manin’s conjecture for a singular quartic del Pezzo surface.
متن کاملO ct 2 00 8 COUNTING INTEGRAL POINTS ON UNIVERSAL TORSORS
— Manin’s conjecture for the asymptotic behavior of the number of rational points of bounded height on del Pezzo surfaces can be approached through universal torsors. We prove several auxiliary results for the estimation of the number of integral points in certain regions on universal torsors. As an application, we prove Manin’s conjecture for a singular quartic del Pezzo surface.
متن کامل